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Abstract

Three fundamental elements to understand human information networks are the
individuals (actors) in the network, the information they exchange, that is often
observable online as text content (emails, social media posts, etc.), and the time when
these exchanges happen. An extremely large amount of research has addressed some
of these aspects either in isolation or as combinations of two of them. There are also
more and more works studying systems where all three elements are present, but
typically using ad hoc models and algorithms that cannot be easily transfered to other
contexts. To address this heterogeneity, in this article we present a simple, expressive
and extensible model for temporal text networks, that we claim can be used as a
common ground across different types of networks and analysis tasks, and we show
how simple procedures to produce views of the model allow the direct application of
analysis methods already developed in other domains, from traditional data mining to
multilayer network mining.

Keywords: Network, Text, Time, Model, Temporal text network, Human information
network

Introduction
A large amount of human-generated information is available online in the form of text
exchanged between individuals at specific times. Examples include social network sites,
online forums and emails. The public accessibility of several of these sources allows us to
observe our society at various scales, from focused conversations among small groups of
individuals to broad political discussions involving heterogeneous audiences from large
geographical areas (Zhou et al. 2017; Nerghes et al. 2014).
This information is undoubtedly very valuable, as shown for example by the large rev-

enues of big Internet companies and by its usage during political campaigns, but it is
also very complex because of its joint textual, structural and temporal nature. To cope
with this complexity, researchers have typically focused on either the topology of the net-
work, as commonly done in Network Science, or the text exchanged among individuals,
using methods from Computational Linguistics. In some cases time has also been taken
into consideration as in, respectively, the fields of Temporal Networks and Temporal
Information Retrieval.
However, despite this broad interest in human information networks, only a limited

number of works have been developed to address text, network topology and time in an
integrated way and using a common data model. In our opinion, this is partly a result of
the over-specialization of today’s academia, and the fragmented and discipline-specific
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development of network research. Unfortunately, omitting any of the three basic elements
of temporal text networks may lead to significant information loss and prevent a deeper
understanding of the information system, as exemplified in the next section.

Amotivating example

One typical usage of social media data in research is to study how information propa-
gates online. In one of the many studies on this topic, the authors have analyzed different
aspects of the propagation process considering the online reactions generated by the
death of a well-known Italian TV anchorman (Magnani et al. 2010).
In Fig. 1 we have reproduced (a) the information propagation network, showing which

posts contained information obtained by which others, (b) the text of some of the posts
generated about this event, and (c) a temporal pattern indicating the number of comments
per day.
While each of these pieces of information alone reveals something, putting them

together into a temporal text network (Fig. 1d) we obtain a much more comprehensive
understanding of the process. On the one hand, we can see that for the posts representing
explicit attempts to propagate information (e.g., Mike passed away) publication time is

Fig. 1 Three elements of an online human information network: a) The topology, where each edge
represents an observed information propagation path: user A writes a post about some news, user B reads
the post and writes herself about it, for example by commenting on it; b) the text exchanged between users,
that is, the text of posts and comments; c) the number of comments over time; d) Topology, time and text
combined into a temporal text network. Only details about two posts are shown
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fundamental to determine their success, and only the first of this type of posts generated
a large and sudden burst of reactions in a very short time; on the other hand, conversa-
tional posts evolving from it (e.g., How has television changed?) can appear later and still
create long but less dense chains of reactions. Other posts not present in the information
propagation network neither explicitly give the news nor ask for an answer, generating no
or few reactions, but still have the role of re-activating the information cascade so that
even the latecomers can find a trace of it; some of these posts (e.g., Bye granpa Mike!, or
R.I.P.) form what has been called an online mourning ritual.
In summary, time, text and topology together can lead to a deeper understanding of

how this information network evolved into its current structure and how information
propagated through it.

Contribution and outline

In this work we introduce a simple but expressive and easily extensible model for tempo-
ral text networks, and define two main approaches to analyze this type of data. We also
show how existing primitive data manipulation operations for multilayer networks can be
composed to easily construct new algorithms for temporal text networks.
Our claim is that such a model can play a similar role of other recent attempts to

unify related areas of network science, such as multilayer networks, which have boosted
research in already existing fields (e.g., multiplex network analysis) by showing that results
in one area could be directly applied to other types of data now expressed using a uniform
terminology and mathematical form. Our objective is to define an essential model,
with a minimal number of features, so that several existing models can be uni-
fied into it without a significant increase in model complexity. We also believe that
a unified model will promote the development of software libraries providing different
data analysis functions for temporal text networks inside a single system, from centrality
measures to community detection and generative models.
The article is organized as follows. In the next section we present an overview of related

work, highlighting how a large amount of research has been produced to analyze human
information networks. As the main objective of this article is to introduce a data model
for temporal text networks, our overview of the state of the art focuses on the data mod-
els already introduced in the literature, to allow a precise comparison with our model. In
“Modeling temporal text networks” section we define our model as a simple attributed
bipartite network. We also show how this simple model can be used to represent many
existing types of text-based interactions, such as direct messages, multicast and broad-
cast. In addition, we show how to express different types of information networks using
our model, and how to extend it with additional features. Finally, we provide a detailed
comparison of our model with the ones presented in the state of the art, showing how
some existing models can be expressed using ours, while others can be obtained by apply-
ing some lossy processing to ours, e.g., replacing the exchanged text with a bag of words,
a set of topics, a sentiment, etc. “Analyzing temporal text networks” section explains how
the model can be used in data analysis. We show how the direct manipulation of the
model can be complemented by two additional types of analysis: continuous and discrete.
In the continuous case, time and text are treated as points in a metric space, and analysis
operations are based on the computation of similarities between these points. In the dis-
crete case, discretization operations (such as time slicing and topic modeling) are applied,
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encoding text and time into multiple discrete layers and enabling the direct application of
the large number of methods already available for multilayer networks. In “A case study”
section we present a practical example of our model and analysis strategies applied to
Twitter data.

Related work
Our concept of temporal text network is a combination of text, network topology and
time. In the literature there is a large number of models supporting one or more of these
aspects, and the objective of this section is to characterize existing models from a com-
mon viewpoint. In this way, in the next section we will be able to provide a precise
comparison between our proposal and existing work, showing that our model is more
expressive but at the same time consistent with existing approaches, reusing existingmod-
eling constructs when possible. In particular, we will show that we can express existing
models using ours, but not vice-versa.
Notice that there are entire well-established disciplines developed to address text, net-

work topology and time in isolation, and we do not review these here as they are widely
covered by text books (Newman 2010; Baeza-Yates and Ribeiro-Neto 1999), described
in numerous research papers (see for example (Blei et al. 2003) and subsequent exten-
sions), and included in several software packages and systems. Instead we describe recent
research efforts combining at least two of these aspects.
Table 1 presents a summary of the models selected for this review, also including our

proposed model (core and extended temporal text network), organized according to four
main criteria: (1) the type of graph used to represent the topological portion of the data,
(2) the type(s) of nodes allowed in the graph, (3) the way in which text is represented
in the model and (4) the way in which time is represented in the model. In “A com-
parison with the state of the art” section these criteria will be used for a comparison
with our model. As our aim is to comprehensively list models, not papers, and the num-
ber of works using some of the models is very large, we have sometimes arbitrarily and
unavoidably chosen a key set of references based on our knowledge and personal selec-
tion. Therefore, please notice that in the table we only indicate selected representative
references; additional references are included in the text. Figure 2 complements Table 1
providing a visual intuition of the reviewed models and of the new models introduced in
this article.

Time & topology

The most basic family of models including both time and topology is the contact sequence
(Holme and Saramäki 2012; Gauvin et al. 2013). This is the most popular model for repre-
senting time and relations as a simple network structure. Mathematically, the model can
be represented as a directed multi-graph G = (V ,E,T) with attributed edges. The set of
vertices V represent actors (e.g., individuals, companies) and the set of edges E represent
the interactions among the actors. When used in practice (Lambiotte et al. 2013; Gauvin
et al. 2013; Paranjape et al. 2017) the duration of the interactions is sometimes consid-
ered negligible and hence represented as a single scalar t ∈ T , while in other occasions
the temporal information is represented as time intervals t = (ts, te) indicating when the
contact between two actors starts (ts) and ends (te) (Viard et al. 2016). Contact sequences
have been typically used to study information spreading (Lambiotte et al. 2013; Cheng
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Fig. 2 A visual gallery of models for time text and networks. a) contact sequence b) time slices (t1 and t2
adjacent) c) longitudinal network d) memory network e) multi-layer memory network f) temporal text
g) longitudinal text h) language network i) document network j) doc-phrase graph k) HIN l) socio-semantic
networkm) temp. socio-semantic network n) citation network o) author-citation network p) spreading
process model q) polyadic conversation r) core temporal text network s) extended temporal text network

et al. 2016), and existing concepts such as motifs and triadic closure have been re-defined
to study the evolving structure of these networks (Paranjape et al. 2017; Viard et al. 2016;
Kim and Diesner 2017).
Differently from contact sequences, where interactions are time-annotated one by one,

other types of models use sequences of time-annotated graphs, where each graph is some-
times also called layer. In time-sliced models, also known as time-aggregated models,
time is expressed as an interval and an edge indicates that an interaction has happened
at some point during the time interval associated to the graph (Mucha et al. 2010).
These models are typically obtained starting from a contact sequence and aggregating
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edges by time. In longitudinal networks relationships about the same or similar actors
are detected at different points in time (Snijders 2005; 2014). From a data modeling
point of view, time slicing and longitudinal networks are very similar, and in practice the
main difference lies in the nature of the time annotation associated to each slice, where
in time slicing adjacent slices are typically associated with adjacent time intervals while
in longitudinal network studies adjacent layers represent network snapshots obtained at
specific points in time. Different types of time annotations are described for example in
Batagelj and Praprotnik (2016).
Memorymodels provide a different view over a temporal network, where ordered tuples

of two or more actors are represented as single nodes (Scholtes et al. 2014; Rosvall et al.
2014; Lambiotte et al. 2015; Peixoto and Rosvall 2017). For example, second order mem-
ory networks (Scholtes et al. 2014; Rosvall et al. 2014) can model the impact of one
predecessor edge. For example, if an actor vi is receiving one message from vj and one
from vk , and is later sending a message to vj and one to vk , a contact sequence loses infor-
mation on whether vi is replying to vj and vk (j → i → j, k → i → k) or forwarding the
messages (j → i → k, k → i → j). A first-order memory model will contain nodes for each
pair of users and have an edge between two nodes if the corresponding pairs appear on
consecutive paths. In our example, if vi is replying we will have two edges in the mem-
ory model:

(−→ji ,−→ij
)
and

(−→
ki ,

−→
ik

)
, while if vi is forwarding the messages we will have the

edges
(−→ji ,−→ik

)
and

(−→
ki ,−→ij

)
. Higher order memory networks also exist (Lambiotte et al.

2015), although they are not as common, to represent causality effects between pathways
consisting of 3 ormore nodes. Deciding the order of themodel is not trivial as specific pat-
terns can be revealed only on a specific subset of memory models. To solve this problem,
Scholtes (2011) introduced a multilayer memory network, composed of multiple mem-
ory networks of different order hierarchically connected between them (e.g., each node in
the 2nd-order layer vij is connected with all nodes in the 3rd-order layer whose path vklm
contains the leg −→ij , so −→ij ⊆ −→

klm).
Time often plays an important role when networks are concerned, because networks

often represent dynamical systems. However, in Table 1 we have only listed distinct
data models explicitly providing time annotations. As an example, growing network mod-
els (Newman 2010) such as preferential attachment (Barabasi and Albert 1999) aim at
explaining the observed topology of empirical networks based on how they evolve in time
from an initial small network. Even if nodes and edges join the network one after the
other, there is no explicit representation of time in the final model. Similarly, we have
not listed papers about methods not explicitly introducing new data models, such as
Lentz et al. (2013).

Time & text

Time is often present inside text, and commercial systems handling large human informa-
tion networks fromGoogle mail to common text messaging applications on smart phones
can automatically identify the messages and annotate the text with temporal information.
In research, text and time are studied together in the field known as temporal infor-

mation retrieval (Alonso et al. 2007; Kanhabua et al. 2015). This is an active area, also
represented at the TREC conference where state-of-the-art information retrieval meth-
ods compete on various practical tasks. Time can be present in the text, as in the examples
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above or as metadata, expressed as absolute or relative time and it can also be specified in
queries used to express information requirements (Brucato and Montesi 2014).
Another set of studies has focused on how text evolves in time, and in particular sen-

timent, with case studies ranging from tweets (O’Connor et al. 2010) to songs, blogs and
presidential speeches (Dodds and Danforth 2010). Text and time are also studied across
data sources, for example to correlate texts from online news to trends emerging in time
series such as financial data (Lavrenko et al. 2000). However, no specific data model is
used for this type of tasks, but only time-annotated documents (understood in a broad
sense, including words, etc.) and time series.

Text & topology

Text and networks have been studied together in various areas, either without considering
time or using networks to represent relationships between texts.
Models where nodes represent parts of a document have been used in structured

information retrieval, which was a particularly active research area when hypertexts and
markup languages became popular (Kotsakis 2002). Text is often contained inside some
structure (e.g., a title, sections, sub-sections, etc.) and queries can be tuned to return spe-
cific parts of a document instead of a full one. As an example, if the searched keyword
is contained inside Subsections 3.1 and 3.3 of a document, a query may return either the
two subsections, or the whole Section 3, depending on the method.
More relevant for this article are document networks, that are graphs whose nodes rep-

resent text documents (Chang and Blei 2009; Menczer 2004). These network models can
be classified in different groups depending on whether they include time or not; later in
this section we refer to citation networks as a type of directed document network where
time is also typically present. Text mining, and in particular clustering, can be applied to
document networks to identify groups of documents that are similar not only because of
their text but also because of their connections, as summarized in a recent article about
clustering attributed graphs (Bothorel et al. 2015).
Several works have focused on networks extracted from text, and we can broadly clas-

sify them into models representing the text itself, aimed at characterizing language, and
models representing actors and concepts mentioned in the text.
Networks where nodes represent words have been used to model both text documents

and languages (Sole et al. 2010). For example, a document can be modeled as a net-
work where words are connected by an edge when they are contiguous, or appear in the
same sentence, paragraph, etc. Similarly whole languages can be modeled focusing on the
relationships between words, as in WordNet or BabelNet.
With regard to the second class of models for networks extracted from text, Named

Entity Recognition methods are typically used to identify the nodes and co-occurrence
(or other language analysis approaches) to create edges among them (Diesner and Carley
2004; Chang et al. 2009). In this case, the output network connects different portions of a
text document, or concepts extracted from the text.
Amodel that has been used to represent the relationships extracted from texts is known

as heterogeneous information network (HIN) (Shi et al. 2017; Ren et al. 2016). HINs are
defined as attributed directed graphs G = (V ,E,A,R) with an object type mapping func-
tion V → A and a link type mapping function E → R, so that each object in the network
(vertices and edges) belongs to a single type and if two edges belong to the same relation
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type R, the two edges share the same starting object type as well as the ending object type.
For example, HINs have been used in the past to model co-occurrence relations between
entities (e.g., famous characters, sports, companies) in Wikipedia articles (Kralj et al.
2016). In Chang et al. (2009) vertices represent either famous characters from the text or
bags of words, while the edges connect words that best explain the contexts where two or
more famous characters appear together in the text. Document-phrase graphs as defined
in Ren et al. (2017) are also HIN-based models, and more in detail probabilistic bipartite
networks B = (V ,U ,E,W ) where the vertices in one partition V represent documents
from a large document collection, the vertices in U represent salient phrases which are
semantically relevant to one or more documents in V, and edges E indicate the relevance
of each sentence for each document. HINs are not limited to represent relations within
documents, text and concepts; but they can also model relations between actors and text.
The most common use of HIN is actually to represent co-author or citation networks. In
Wang et al. (2017), for example, the authors use an heterogeneous information network
to describe the relations between scientific articles, their authors, and the venues where
they were published.
One of the concerns recently raised against using methods from social network

analysis to analyze social media is their intrinsic actor-centered approach (e.g., peo-
ple, companies, stakeholders), focusing on social interactions without properly char-
acterizing other aspects of the communication (Roth 2017). A similar argument can
be used against the use of just Natural Language Processing or semantic networks
(Sowa 2014).
Following this reasoning, a recent stream of research focused on combining structural

and semantic data simultaneously, which led to the formalization of the socio-semantic
network model (Roth and Cointet 2010; Roth 2017; Hellsten and Leydesdorff). Originally,
socio-semantic networks were just bipartite graphs interconnecting agents (also known as
actors in Social Network Analysis) with semantic objects called concepts, corresponding
for example to terms, n-grams, or lexical tags.
During the last decade the socio-semantic network model has been extended to extract

more valuable knowledge from social media. An illustrative example of such extension
can be found in Hellsten and Leydesdorff () where the authors propose to combine the
aforementioned social and socio-semantic networks into a single model. In short, they
use a single matrix representation where the diagonal sub-matrices represent the relation
between the same type of entities (agents and concepts) and the off-diagonal matri-
ces represent the relation between different ones (agent/concept and concept/agent).
From the point of view of data modeling, HINs are very related to socio-semantic net-
work models, even though HINs have been introduced as more general modeling tools
while socio-semantic networks have emerged and are used in a specific application
context.
A final work worth mentioning in this class is Rosen-Zvi et al. (2004), where topic mod-

eling is performed using an extended model considering not only the association between
topics, words and documents, but also the association between documents and their
authors. However, this has not been included in our summary table because it introduces
a generative model to summarize the data in the form of parameters indicating the prob-
ability that a given actor produces a given set of words, but not to represent the empirical
data showing which actors have written what text.
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Time & text & topology

Many works in the literature have dealt with time, text and topology using ad hoc mod-
els specifically designed to capture relevant aspects of specific platforms such as Twitter.
For example, in Tamine et al. (2016) a communication network is built in three steps: (1)
conversation trees are extracted from the dataset by inversely following the chain of Twit-
ter user interactions (replies, mentions and retweets); (2) the trees are pruned based on
the time elapsed between the root tweet and the overlap of tweets and participants in
the tree; (3) finally, all trees are merged to generate a simple weighted graph of interac-
tions between authors. A related model is the so-called polyadic conversation (Magnani
et al. 2012), designed to describe user interactions in microblogging sites as a series of
related conversations — also called polyadic interactions. A polyadic interaction is a tuple
i = (v,U ,m, t) where v ∈ V is the sender of the message m ∈ M, U ⊆ V is the set of
receivers and t ∈ T is the timestamp of the communication act. A polyadic conversation
is then defined as a chronologically ordered tree G = (I,E) where I is a set of polyadic
interactions and E ⊂ I × I.
In Roth and Cointet (2010) a temporal model was used to compare the co-growth of two

epistemic networks, a Twitter dataset and a set of related blogs, with the underlying social
network of contacts. The temporal information attached to the edges of the network is,
afterwards, used to compare the order of formation of epistemic and social communities.
Citation networks have received a lot of attention, and include text documents, directed

edges between them and also time annotations (Institute for Scientific Information et
al. 1964; Batagelj). In addition, when author co-citation analysis is performed (White
and Griffith 1981), the underlying data model must also contain information about who
authored which documents.
Information diffusion processes are often modeled including the diffused information

item (meme, blog post, etc.), the actors propagating it, and the times of propagation. This
is for example the case for the model used in Leskovec et al. (2007). However, the majority
of these models do not use text to perform the data analysis, but (sometimes) to define the
links between documents. Time can also be used to infer network structure based on the
observation of propagation events. For example, the observation of a group of individuals
repeatedly re-sharing common tweets in the same temporal order may suggest that these
people are connected, and that information (tweets, in this case) passes through these
hidden connections (Gomez Rodriguez et al. 2010). In Salehi et al. (2015) existing theo-
retical diffusion models for interconnected networks are reviewed, extending concepts in
information diffusion to a multilayer model.
In order to preserve as much original information as possible, Šćepanović et al. (2017)

use a more generic process to build the network, mixing techniques from social network
and semantic analysis. In their work, the communication network is modeled as a sim-
ple, temporal graph using the Twitter “replies” to relate actors with each other. Then, they
apply several semantic analysis procedures to generate supporting networks that describe
the text-related features. A comparative analysis between the communication network
and a subset of the semantic networks is used to study several aspects of the overall sys-
tem such as semantic homophily and its evolution. However, from a modeling point of
view text is not explicitly represented in this model, but coded inside the semantic lay-
ers. We will later use a related approach to exemplify how to use our model for data
analysis.
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Some attention has also been devoted to models describing co-evolutionary networks
(Gross and Blasius 2008; Magnani and Rossi 2013). Some of these models allow the
representation of a status associated to each node. Statuses can be used for example
to represent the political affiliation of the person represented by the node. In growing
network models, the status can influence the evolution of the network for example by
increasing the probability that people will create connections with other individuals shar-
ing the same political affiliation (Kimura et al. 2008; Lee et al. 2015). As for the case of
simple network growing models, time is not typically kept at the end of the growing pro-
cess, and in addition status has not been used to model text to the best of our knowledge.
Therefore, we have not included these works in our summary table, even if we consider
them potentially relevant for this field if extended in the future.

Modeling temporal text networks
In our opinion, a good model for temporal text networks should be general enough to be
able to represent a wide range of systems, but also contain a minimal number of modeling
constructs, to make the model easier to use and study. In other terms, a good compro-
mise should be found between expressiveness and simplicity. In addition, given the large
number of existing models that have been used for a long time to describe specific aspects
of temporal text networks, we believe that both the modeling constructs and the termi-
nology used in our model should be as aligned with previous work as possible. Following
these design principles, we propose the following definition of temporal text networks:

Definition 1 [Temporal text network]
A temporal text network is a triple (G, x, t) where:

1. G = (A,M,E) is a directed bipartite graph, where, A is a set of actors, M is a set of
messages, and E ⊆ (A × M) ∪ (M × A).

2. x : M → X, where X is a set of sequences of characters (texts).
3. t : E → T , where T is an ordered set of time annotations.

and where the following constraints are satisfied:

1. ∀m ∈ M, in-degree(m) = 1.
2. (ai,m), (m, aj) ∈ E ⇒ t(ai,m) ≤ t(m, aj).

In our model edge directionality indicates the flow of text in the network: (ai,mj) ∈ E
indicates that actor ai has produced text mj, while (mj, ai) ∈ E indicates that actor ai is
the recipient of text mj. Actors with out-degree larger than 0 are information producers,
actors with in-degree greater than 0 are information consumers, and actors with both
positive in- and out-degree are information prosumers.
Text is represented as a combination of a text container (m ∈ M), and a textual content

(x(m)). As a consequence, actors in our model do not only generate text, but produce text
messages. Two text messages (for example, two tweets, or two emails) may be different
messages even if they contain the same text and have been exchanged between the same
actors at the same timestamp.
The third key component of temporal text networks is the time attribute t. In our

model, time is defined based on a generic set of ordered time annotations T. This enables
the adoption of several ways of representing time: as an absolute date-time, as a relative
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date-time, as a timestampwith an arbitrary format or as a discrete time interval if time has
been sliced into time windows as it often happens when temporal networks are analyzed
(See Table 1).
When writing about the model’s elements, we will sometimes use a concise notation.

For example, we will sometimes write an edge and its time together, as in: (ai,mj, tq),
where tq = t(ai,mj), and we will sometimes write a message by also indicating its sender,
its recipients and its text, as in: (as,mj, {ar1 , . . . , arn}, “text”), where “text” = x(mj). Finally,
when all the timestamps on the edges adjacent to a message are equal, we can also add a
time to the previous notation, as in: (as,mj, {ar1 , . . . , arn}, “text”, tq).

Applicability

While very simple, the model introduced above can be used to represent a range of differ-
ent forms of communication and data from different sources. In particular, by explicitly
dividing the network nodes into actors andmessages, their relations implicitly carry more
information. For example, whether the type of communication implemented by amessage
is unicast, multicast or broadcast is indicated by the out-degree of the message.
With unicast a message such as a handwritten letter is sent from a single source to a

specific target. This form of written communication has been preserved to the present day
through instant messaging services such as those offered by Twitter, FacebookMessenger
or Whatsapp and, more traditionally, using the electronic email. Unicast communication
allows to keep some text private between two actors, but it can have a large overhead if
the same text must be sent to multiple sources because it requires an individual message
for every recipient. In order to reach a larger population it is sometimes preferable to use
broadcasting or multicasting. In the former, the message is transmitted to all possible
receivers1, while when the information is addressed to a group of people but not to all pos-
sible receivers, such as a post on a Facebook wall, the communication is called multicast.
Figure 3 shows these different types of communication represented using our model.
Figure 4 shows an example of how a multicast communication through email can be

modeled as part of a temporal text network. The resulting network includes the sender
of the message (User A) and two other actors (User B and User C) who where explicit

Fig. 3 Models for different types of communication. a) unicast from A to C; b) unicast from A to B, C and D; c)
broadcast from A—which can also be implemented as in the previous case if x(M1) = x(M2) = x(M3)

and c) multicast from A to C and D
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Fig. 4 Model of a multicast email as a temporal text network. The entire text content of the email (including
the subject line and the body) are encoded as a single messageM1. The sender of the email (User A) and the
two friends (User B, User C) are modeled as individual actors. In this case, the ingoing and outgoing edges of
the message contain a different time, indicating the delivery and reception timestamps registered in the
email servers

recipients of the message. The fourth vertexM1 ∈ M represents the email and x(M1) cor-
responds to its text content (the subject line and the body content). In this case, the time
attribute associated to each one of the edges represents the time when the message was
delivered or received by the SMTP and POP3 servers allowing us not only to represent
the communication flow, but also the effect of the channel and/or medium. Representing
multiple emails as in the example above would lead to a full temporal text network.
In the next section we describe how to express other human information networks by

extending our core model.

Model extensions

One of the design principles we used to define our model was simplicity, to make it
tractable and general. On top of the basic model defined above, we can also easily add
extensions to fit context-specific requirements.
With regard to the structure, we can straightforwardly add edges between messages to

represent either information available from the data such as retweets on Twitter, or infor-
mation deduced from the analysis of the data such as links indicating that one message
is probably an answer to another, if we want to study information flows. Figure 5 shows,
for example, the modeling process of a blog post M1 and the associated comments from
the readers {M2,M3,M4}. In this particular case, we know the identity of each one of the
authors, because they are authenticated in the web platform, but we do not know exactly
who are the recipients of their comments. While we can assume by context that the blog
postM1 was read by follower B and that her message was then read by the blog owner A,
it is uncertain what the third user (follower C) has read. We only know that the text pro-
duced by user C is a reply to the previous comment M3, but we cannot infer if he has or
has not read the previous messagesM1 andM2. One possible way to model such scenario
is to represent the relation between messages instead of the relation between messages
and receivers. Similarly, in the example of Fig. 6 the edges between messages are used to
represent retweets on a micro-blogging platform.
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Fig. 5 Model of a blog post as a temporal text network. The original data set contains a blog postM1 and
three comments (M2,M3,M4); which are encoded as three individual messages. The three participants on the
discussion (User A, Follower B, Follower C) are modeled as individual producers. In this case, the edges of the
messages indicate the relation between their content

As we discuss in the next sections, this type of extension would nicely fit our analysis
framework where one main class of operations transforms the data into a multilayer rep-
resentation. Similarly, wemay add edges between actors indicating other types of relations
relevant for the analysis of the human information network such as indirect recipients.
Figure 6 shows the modeling process of Twitter as a temporal text network. Unlike the

Fig. 6 Model of a Twitter network as a temporal text network. The entire content of each tweet (including
hashtags, urls and retweeted content) are encoded as messages. Senders (@A, @D) and mentioned users
(@B, @C, @D) are modeled as individual actors. In this case, both the ingoing and outgoing edges of the
message contain the same time, which indicates when the tweet has been sent. The edge betweenM3 and
M2 indicates the retweet relation between both tweets
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previous communication channels we discussed, in Twitter the recipients of the informa-
tion are encoded in the text of the messages rather than being explicit in the metadata
(e.g., the edge (M1,B, t1) exists because actor A mentions B in the first message of the
data set). In addition, Twitter users can also see messages from other users they are fol-
lowing, which in our model is represented by the actor-to-actor relations. This difference
between intra- and inter-layer relations allows us to differentiate between direct and
indirect communication in many social platforms.
In our basicmodel x represents a generic string of characters over some alphabet, whose

interpretation will depend on the source of the data and the context of the analysis. For
example, while the symbol # usually denotes the start of a filtering tag in online social
networks such as Twitter or Instagram, in other media sites it is just an acronym for the
word “number”. Therefore, for specific application contexts additional attributes can be
added for example to messages by providing special information, such as the hashtags
included in the text in the case of Twitter (See Fig. 6). In particular, we can think of having
three types of information associated to each message:

1. The text, as in our basic model,
2. Metadata that is available in the specific data source used for the analysis, such as

links to other resources (webpages, other tweets or multimedia content), like and
retweet counts, or hashtags.

3. Additional information not directly available from the data source but obtained
analyzing the text, for example through topic analysis.

Different types of temporal information have been used in existing works on temporal
networks and temporal text analysis (See “Related work” section). For example, time can
represent actions from the users such as the time when a message is posted and/or the
time when it is read as we did in the Twitter example. Alternatively, times can be used to
represent a physical property of the channel, as it happens in computer networks when
there can be a transmission delay from the source to the destination of a message (See
Fig. 4). Finally, time can also be associated to the message, indicating for example the
time interval when the message exists. Furthermore, this information can be complete
or incomplete, so that if only the initial time of the interval exists we must assume the
message is still valid at the time of analysis as we did when we describe the blog posts; it
can be private (accessible only to specific actors) or universally accessible by everyone.

A comparison with the state of the art

Our core and extended models of temporal text networks allow us to describe a variety
of human information networks ranging from person-to-person email communication
to complex interactions in social media sites. In “Related work” section we summarized
other models from the literature, that have been used in the past to partially support sim-
ilar scenarios. In this section we provide a comparative review between our models and
the ones described in Table 1 and Fig. 2, emphasizing how they can be used to describe
human information networks.
All models based only on time and topology (See Fig. 2a-e) do not include informa-

tion about messages, documents or text. A simple extension adding a text attribute to the
edges would still be less expressive than our model, because this simpler solution would
not be able to differentiate between different types of communication such as unicast,
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multicast and broadcast. These are instead allowed in our model exploiting the pres-
ence of nodes representing text messages, and thus justifying the adoption of a bipartite
model instead of the simple graphs used in contact sequences. Single time annotations are
also unable to distinguish between production/consumption or sending/receiving time.
In summary, contact sequence models (Fig. 2a) can be expressed using our model by
representing edges as edge-message-edge triples, but contact sequences cannot represent
all the information that we can express using our model. Time-slices (Fig. 2b) and longi-
tudinal models (Fig. 2c) can also be obtained starting from our model, as we do not make
any assumption about how the time is represented on the edges. It is thus possible to
represent both time-slices and longitudinal models as temporal text networks by just cre-
ating a newmessagemj and a sequence of edges (vi,mj, l), (mj, vk , l) for each original edge
e = (vi, vk , l) in the layer l of the sliced network. Finally, when only time and structure
are concerned, memory models (Fig. 2d-e) are usually constructed from contact sequence
models by aggregating the edges conditional on preceding pathways. While the original
temporal information is partially preserved during the creation of the memory model, it
is impossible to preserve more information from our temporal text network such as mes-
sages or network attributes. Therefore, we can think of our model as a way to represent
raw and complete information about the temporal interactions and memory models as a
way to emphasize information provenance. However, to represent provenance we need to
allow edges between messages, and for this reason only our extended temporal text net-
work model is able to express all the information present in memory models (in addition
to text, multicasting and production/consumption times, as for all the other models not
based on bipartite graphs).
The absence of relations makes it difficult to describe human information networks

using just time and text (Fig. 2f-g), and despite their versatility to analyze text docu-
ments, strictly speaking none of the models only focusing on text and topology without
actors (Fig. 2h-j) allows us to represent human-information networks as they do not con-
tain any representation of the consumers and producers of the text. When also actors
are represented, as in some HIN-based models (Fig. 2k) and in socio-semantic net-
works (Fig. 2l-m), our model adds directionality, which is necessary to represent text
sender/receiver and producer/consumer relationships. Time is also not typically used in
these models, but a temporal extension of existing HIN-based and basic socio-semantic
models is straightforward and has in fact already appeared in the literature (Fig. 2m). The
application of socio-semantic networks are also limited if compared with our model, as
they contain already processed information (concepts) rather than text. With this we do
not mean that our model is superior, as it can be useful to process the text into concepts,
but this shows how we can go from our model to a socio-semantic model but not the
other way round.
Citation networks and author-citation networks (Fig. 2n-o) can represent relationships

between messages, and thus require our extended model to express their information.
However, they cannot express communication, because even the more expressive author-
citation network model (Fig. 2o) only focuses on the production of text. In particular,
there are no edges between documents and authors, but only (implicit) edges between
authors end documents. Spreading processes (Fig. 2p) also share the same limitations of
either contact sequences or author-citation networks, depending on whether messages
and/or authors are represented in the specific model, in addition of not (typically)
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keeping the text content, which is however a minor problem as text can be easily added
to the nodes representing the shared items. Compared with our core model, polyadic
conversations (Fig. 2q) can express almost the same information: both can express uni-
cast, multicast and broadcast relations between messages and actors, both differentiate
between information producers and consumers and contain the raw textual information.
However, while in our model each individual edge connecting messages and consumers
can have a different temporal attribute, in the polyadic conversation model each polyadic
interaction has one single temporal value.

Analyzing temporal text networks
One reason to adopt a common model instead of defining ad hoc models for each appli-
cation is to reuse existing analysis methods. While our model can be analyzed directly,
for example studying dynamical processes such as text propagation in a similar way as
in our motivating example, we can consider other strategies. Here we define two more
approaches that can be used to analyze temporal text networks: we call them continuous
and discrete.
The practical benefit of using these two approaches is that instead of developing new

algorithms the analyst can focus on defining mapping functions encoding the model in a
way that fits the data and analysis at hand. Then, these functions automatically generate
model views of which existing algorithms can be computed.

Continuous analysis

The main idea behind this approach is to map the elements of the network (e.g., actors,
messages, content, etc.) into an asymmetric metric space. This means that it is possible to
compute distances between them.
Once distances are available, one can directly reuse existing data analysis methods for

metric spaces, such as traditional distance-based and density-based algorithms (k-means,
db-scan, etc.). Distances can also be used to retrieve relevant information from large tem-
poral text networks, specifying an information query as an element of the metric space
and retrieving those elements that are the closest. We present an example of this last type
of analysis in the next section.
The first way of doing this is to use a network embedding method (Goyal and Ferrara).

While network embedding was initially defined for simple graphs, more recent algorithms
can be directly applied to attributed graphs (Huang et al. 2017). Meanwhile, we foresee
the definition of special versions of these algorithms that are specific for temporal text
networks. Figure 7 shows an example of this first type of translation, where messages are
the target of the analysis. The same approach can also be used to study other structures
and elements in the temporal text network such as actors or combinations of actors and
messages.
The second way to use the continuous approach is to directly define a distance function,

without any explicit embedding into a coordinate system, so that the points form a metric
space but have not an explicit position: only their relationships are defined. This approach
is represented in Fig. 8.
The two approaches may look similar: in both cases algorithms use distances, which

can be computed after an embedding or are directly defined in the distance matrix. In
practice, however, there can be relevant differences. For example, after embedding it is
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Fig. 7 Continuous approach: embedding. (left) A temporal text network with 6 actors — circles — and 5
messages — squares; (right) the messages have been grouped into two clusters based on their topological,
temporal and textual distance. The point marked with q represents a user’s information requirements; in this
example the left cluster (m1,m2,m3) contains nodes that are more relevant for the user

easier to index the data so that not all distances must be computed when algorithms are
executed, leading to lower computation time. On the other hand, the direct usage of a
distance function is more natural if distances are asymmetric, e.g., when d(M1,M2) 
=
d(M2,M1). Asymmetric distances often appear in temporal and directed networks, that
are both features of our model.

Discrete analysis

The main idea behind this approach is to encode temporal and textual information into
network structures, in particular layers in a multilayer network, so that methods from
multilayer network analysis can be directly applied (Kivelä et al. 2014; Dickison et al.
2016). This can be done by defining a mapping function from time and text into a discrete
set of classes that are relevant for the analysis. Then, topic-and-time-based user centrality,
topic-and-time-based relevance, as well as community detection algorithms can be used.
An example of this last type of analysis on real data follows in the next section.
Textual discretization is typically performed using methods from Natural Language

Processing such as topic, sentiment or semantic analysis. The main objective of the

Fig. 8 Continuous approach: distance-based. (left) A temporal text network with 6 actors — circles — and 5
messages — squares; (right) a messages’ distance matrix is obtained from the network topology and time
attributes
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procedure is to group together messages whose contents have similar characteristics.
Time discretization is apparently simpler, because only the cutting points between time
slices must be indicated. However, also time discretization presents many options. First,
there are often many ways of defining the cutting points, leading to different results.
Second, after the cutting points have been defined there can still be different ways of
distributing network structures into the slices. For example, if we want to discretize mes-
sages, we can place a message mi in a specific interval (ta, tb) either if the incoming edge
e = (vj,mi, t) exists in the interval (ta, tb), if all the edges from/to mi exist in the interval,
if at least one of the out-going edges e = (mi, vj, t) exist in the interval, etc. Finally, we
use the termmultiple discretizationwhen both textual and time discretization are applied
together to generate the different groups.
Under this procedure, our model would produce a k-partite network with one partition

for each new cluster of messages and one partition for the actors. The procedure to gen-
erate such network is straightforward once the discretization function is defined. Figure 9
shows an example of textual discretization where the resulting 3-partite network contains
the original layer of actorsA, and twomessage layers with 2 and 4messages each grouping
together messages about the same topic. In this particular example, x(M4) was related to
both topics, therefore the messageM4 appears in both layers. A similar network structure
will emerge from time discretization.
An additional operation on multilayer networks that can be applied to the discretized

data is projection, creating edges in one layer based on the information present in another
layer. In the resulting multilayer network, a new edge e[l]ij = (vi, vj) is created if there is a
message mk in the partition l ∈ L of the original network with: a) an edge (vi,mk) from
actor vi to message mk and b) an edge (mk , vj) from message mk to actor vj. Weights can
also be added to the new edges, using various methods. Figure 10 shows one possible
projection from the network in Fig. 9. In this example the content of the messages (and
more in general also the time) are now encoded into the relations between actors.

Fig. 9 Textual discretization. (left) A temporal text network with 6 actors — circles — and 5 messages —
squares; (right) the network has been discretized into two clusters — the top one with 2 messages, the
bottom one with 4— based on the topic of the messages
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Fig. 10 Projection. (left) A projection of the message layers into the actor layer in the original bipartite
network in Fig. 9-left. The projected multilayer network has 6 actors, 12 nodes and 5 weighted edges; (right) a
similar projection using the 3-partite network described in Fig. 9-right which generates a multilayer network
with 6 actors, 18 nodes and 7 weighted edges

The main advantage of using a projected multilayer network to analyze temporal text
networks is the vast available literature that has targeted this type of data. In “Discrete
analysis” section we use the approach described above together with a clustering algo-
rithm for multilayer networks to find communities of actors discussing about the same
topics during the same time spans.

A case study
In this section, we apply the model and approaches introduced in “Modeling temporal
text networks” and “Analyzing temporal text networks” sections to a real temporal text
network. In particular, we focus on using the discretization approach introduced in “Dis-
crete analysis” section to analyze the formation and evolution of communities of actors
and messages.
The objective of this section is two-fold. First, we want to give a concrete example of

the abstract type of analysis described in the previous section. Second, we want to show
in practice how a new type of analysis can be easily built as a composition of the transfor-
mations introduced in the previous section and an existing algorithm (“Discrete analysis”
section).

Dataset

Our initial dataset consists of 247,399 public tweets with the hashtag #iot (Internet of
Things) or some of its variants (e.g., #IoT, #IOT, etc.) automatically collected using the
Twitter streaming API in June, 2017. The dataset contains mentions (tweets including
@username), retweets (tweets starting with RT@username), other tweets that are neither



Vega et al. Applied Network Science  (2018) 3:25 Page 21 of 26

mentions nor retweets, and the 51,369 users involved in the aforementioned communi-
cations. In order to improve the homogeneity of the collected data we further filtered our
dataset by keeping only the tweets using at least one of thirty-two hashtags selected by
domain experts as representative of main topics in this domain. This operation removed
for example tweets containing the string #iot but not concerning the Internet of Things.
In the following experiments we focus on the network obtained starting from the tweets
containingmentions (about 5% of the initial tweets), built by coding each tweet as in Fig. 6.
The resulting temporal text network contains about one third of the users in the initial

dataset (15,717) and the 13,210 messages exchanged between them (See Table 2). We
call this the original network, and use it as a the starting point for both the following
experiments.

Discrete analysis

Social interactions within a group of participants can form a community if they occur
more frequently within the group than with other members of the network. In tempo-
ral text networks, those interactions are the result of the exchange of messages between
actors. In this example we show how our model can be used to find communities of actors
discussing about the same topics during the same weeks. Following the method described
in “Discrete analysis” section we first transform our network to a multilayer network pre-
serving information about interactions between users, topics and time, so that we can
then apply an existing clustering algorithm.
The discretized k-partite network is built following the procedure explained in “Discrete

analysis” section. In this particular example, we first split the original layer of messages
using their hashtags as an indication of the topic, then we further discretize based on the
week whenmessages are posted. The second discretization uses the posting time to create
hashtag-week-specific layers.
Finally, we build the multilayer network by projecting each one of the layers contain-

ing messages into the actors’ layer. Two actors in this network are connected in a given
layer L = (h,w) if at least one of them has sent a message to the other using the hash-
tag h during the week w. If multiple messages have been exchanged between two actors
in the same layer, only a single edge is generated during the projection. At this step all
edges are undirected and unweighted to fit the community detection algorithm we used.
Table 2 describes the main properties of the original temporal text network, the projected
k-partite and the final multilayer network used during the analysis.
Using the multilayer network and the clique percolation mechanism described in

Mucha et al. (2010), we proceed to detect communities of actors across the whole
network.
Figure 11 shows the communities with more than 3 actors formed in the multilayer

network. Communities contain users and topics, and both users and topics can overlap
across communities. The number of users is indicated by the size of the community, while

Table 2 Temporal text networks used in the case study and its basic properties: number of actors
(|A|), number of messages (|M|), number of edges (|E|) and number of layers (|L|)
Networks Type |A| |M| |E| |L|
Original Bipartite 15,717 13,210 35,015 2

Discretized k-partite 15,717 17,273 44,943 182

Projected Multilayer 15,717 - 23,766 182
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the layers representing the topics of interest of the actors are annotated next to each com-
munity. The smallest community in the diagram has 4 actors in the same layer, while the
largest community contains 27 different actors and 3 layers. The edges between com-
munities in different weeks indicate that at least one third of the users in the second
community were also present in its predecessor. The thicker the line, the more users are
shared between them.
We can observe that some of the hashtags, in particular artificial intelligence (#ai), aug-

mented reality (#ar) and virtual reality (#ai), are very popular in the IoT space, with several
groups of interest of different sizes forming around one or more of them. However, while
the three topics are present across the whole month, the communities they form are very
volatile. Only one of the smallest community with just 4 actors, for example, is preserved
in time without changing its members or the topics they discuss. The largest commu-
nities formed during the first week, instead, disappear in week 2. Later on, some of the
same users form new communities but with less members and a higher variance of top-
ics. Less frequent hashtags such as #machinelearning, #security, #sensors, #smartcity and
#blockchain also form groups of interest, usually smaller and with no or a few connections
with the groups of users discussing the most common topics.

Fig. 11 Evolution of communities in the IoT space. The size of the communities is indicated by the size of the
nodes — representing the number of actors — and the annotated hashtags. The thickness of the edges
between two communities indicates the number of common actors between them
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Overall these results suggest that the IoT space is very fragmented in this Twitter
dataset. None of the found communities was big enough to become the main arena to
develop a long-standing conversation on a specific topic. Instead, users organize them-
selves in smaller groups that change over time. Without combining topology, text and
time we would find bigger communities, that would however include users talking about
different things and at different times.
In summary, this example shows how a new analysis method can be easily constructed

using our model and the approaches described in the previous section. In addition, also
the results of this experiment highlight the value of using all the elements of the temporal
text network in the analysis.

Discussion and conclusions
In this work we introduce a general model to represent temporal text networks based on
the principles of expressiveness, simplicity and tractability. Our model is expressive and
simple enough to encode the key components of human information networks (topology,
time and text) into a single bipartite network, so that we can represent a range of different
forms of communication and data sources spanning from postal services to online social
media.
We additionally show how the model can be analyzed either directly or indirectly,

to perform a variety of mining tasks. In particular, we define various transformations
for two approaches that we call continuous and discrete. Using such transformations,
we can map the data into existing models, allowing to reuse part of the machin-
ery already developed to analyze complex data. While we do not describe each one
of the possibilities enabled by our model in detail, in the experimental section we
show two concrete experiments using the aforementioned transformations to ana-
lyze a set of communication messages exchanged in the Twitter platform during
June 2017.
During the past century, the research community has demonstrated a huge interest

in studying human information networks. As a consequence, researchers from different
disciplines have devoted a considerable time to develop new models and methods to
describe aspects of interest in this scenario. However, as we have shown in our review,
there has been none or few successful attempts to unify the literature under a common
framework: several models and algorithms have been proposed, but only for a subset of
the aspects we consider in this article or they have been developed ad hoc to address a
specific problem. So, results in one area cannot be directly applied to other types of data.
We believe that our work can play a key role in the process of consolidating existing efforts
from different disciplines under a common framework, in the establishment of a com-
mon terminology and in the development of new analytical software able to cope with the
complexity of such data.

Endnote
1 For simplicity we use the expression “all possible receivers” to refer to the community

in which the information is spread, independent of whether the community is the whole
Internet, the whole world or a set of members registered to a private site.
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